博客
关于我
机器学习之逻辑回归(Logistic Regression)精讲(附代码)
阅读量:760 次
发布时间:2019-03-23

本文共 447 字,大约阅读时间需要 1 分钟。

逻辑回归是一种广泛应用于分类任务的机器学习模型,尽管其名称中包含“回归”一词,但其核心目标与回归分析有所不同。逻辑回归专注于预测目标变量的取值属于其中一个类别,适用于解决二分类问题。

基本原理

逻辑回归的核心假设函数采用了sigmoid变换,将输入特征映射到0和1之间的概率范围。具体而言,假设函数的形式如下:

h(θ(x)) = 1

这表示在给定特征向量x和参数θ的条件下,模型预测的类别概率为1的可能性。通过sigmoid函数的转换,逻辑回归不仅能够处理非线性关系,还能将输出限定在(0,1)区间内,使其适合分类任务。

这个假设函数的设计考虑了以下关键点:

  • 非线性映射:sigmoid函数能够将线性模型扩展到非线性域,从而捕捉数据中的复杂模式。
  • 输出范围的限制:输出值被限制在(0,1)之间,符合分类任务中两类别的对立关系。
  • 可微性:sigmoid函数及其导数在实际应用中对优化算法(如梯度下降)具有重要意义。
  • 通过上述机制,逻辑回归能够有效区分两类别数据,并在实际应用中表现出较强的性能。

    转载地址:http://krlzk.baihongyu.com/

    你可能感兴趣的文章
    no session found for current thread
    查看>>
    No static resource favicon.ico.
    查看>>
    no such file or directory AndroidManifest.xml
    查看>>
    No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
    查看>>
    NO.23 ZenTaoPHP目录结构
    查看>>
    no1
    查看>>
    NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
    查看>>
    NOAA(美国海洋和大气管理局)气象数据获取与POI点数据获取
    查看>>
    NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
    查看>>
    node
    查看>>
    node exporter完整版
    查看>>
    node HelloWorld入门篇
    查看>>
    Node JS: < 一> 初识Node JS
    查看>>
    Node JS: < 二> Node JS例子解析
    查看>>
    Node Sass does not yet support your current environment: Linux 64-bit with Unsupported runtime(93)解决
    查看>>
    Node Sass does not yet support your current environment: Windows 64-bit with Unsupported runtime(72)
    查看>>
    Node 裁切图片的方法
    查看>>
    node+express+mysql 实现登陆注册
    查看>>
    Node+Express连接mysql实现增删改查
    查看>>
    node, nvm, npm,pnpm,以前简单的前端环境为什么越来越复杂
    查看>>